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Abstract 

Damped boring bars are necessary in deep hole boring operations as regular boring bars are prone to severe chatter. Boring bars are often 

damped by integrating a tuned vibration absorber that will damp the flexible mode(s) and minimize chatter. This paper introduces a new 

method to design damped boring bars using the receptance coupling approach. The boring bar is modeled as a cantilevered Euler-

Bernoulli beam. Receptances, i.e. frequency response functions of the boring bar are obtained at its free (cutting) end and at potential 

locations where the receptances of a tunable mass damper can be synthesized. The objective of this kind of coupling is to maximize the 

dynamic stiffness of the boring bar at the free end. Treating the boring bar and the tunable mass damper as separate substructures 

facilitates sensitivity analysis for identifying optimal parameters of the tunable mass. Sensitivity analysis is carried out to investigate 

influence of mass, stiffness, damping properties. Absorber effectiveness was observed to saturate beyond certain levels of stiffness and 

damping values. For boring of an Aluminum alloy, simulated chatter-free depth of cut was found to increase to 0.58 mm with the 

optimally tuned and damped bar as compared to being 0.15 mm for the original bar, a significant improvement. The methods presented 

are simple and technically elegant and can be used to optimally design damped boring bars to increase their resistance against chatter 

vibrations. 
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1. INTRODUCTION 

Deep hole boring necessitates the use of long slender boring 

bars with length to diameter ratios ranging from six to ten or 

higher. These boring bars are essentially cantilevered with 

cutting forces acting on the free end. On account of being long, 

slender and cantilevered, and because of their inherently low 

structural damping, the boring bars tend to vibrate with large 

amplitudes under the action of cutting forces. Such process 

induced large amplitude vibrations often result in machining 

instabilities, i.e. chatter. Chatter deteriorates surface finish and 

results in high tool wear or breakage; thereby limiting 

productivity, precision, and material removal rates. To avoid 

chatter, boring bars must possess improved dynamic stiffness 

and damping behavior.  

Dynamic stiffness and damping are often characterized using 

frequency response functions (FRFs), i.e. receptances. 

Moreover, following the classical chatter model of Tobias and 

Fishwick [1], it is common to relate stable cutting conditions to 

the inverse of the minimum real part of tool point FRF. Hence, 

the approach adopted in this paper is to focus on reducing the 

magnitude of the peak in real part of the tool point FRF by 

presenting a strategy to design damped boring bars. It is 

hypothesized that reducing the magnitude of the peak in real 

part of the FRF will result in chatter free boring processes.  

There exist many methods in the literature to maximize the 

dynamic stiffness and improve damping, and in turn obtain 

chatter free boring processes. These methods include solutions 

using tuned dampers – passive [2,3], semi-active [4], and/or 

active [5]. Though active systems can sometimes outperform 

passive ones, in most cases, a well-designed passive damper is 

preferred due to its simplicity, cheaper costs, and Industrial 

viability. Hence, this paper also focuses on articulating a 

solution using a passive tuned mass damper (TMD) to increase 

resistance against chatter. 

Design of TMDs include the classical approach of Den Hartog 

[6], in which analytical closed form solutions were presented to 

integrate a tuned damper for the case of zero damping in the 

main simplified single degree of freedom (SDOF)vibrating 

system. Rivin and Kang [7] analyzed the more general case of 

damped original systems and different forcing functions. Sims 

[8] presented analytical solutions to tune vibration absorbers 

(dampers) to suppress chatter for the case of zero damping in 

main SDOF systems. 

Though effective, these [6-8] tuning methods do not consider 

the effect of TMD location relative to the free end of tool and 

model continuous systems as simplified SDOF systems. To 

address the issue of designing dampers that can be positioned at 

any arbitrary distance away from the free end of the tool, we 

present an approach using receptance coupling [9]. Receptance 

coupling, a structural modification tool, is used to couple two 

separate subsystems in the frequency domain such that final 

response of the main system can be obtained as necessary. In 

this study, two subsystems: unmodified boring bar and tuned 

mass damper, as shown in Fig. 1, are coupled together to obtain 

the modified FRF of the damped bar. TMD parameters were 

varied in a feasible range and modified response was studied to 

obtain the optimized damper parameters. 

 
Figure 1: Schematic of long boring bars 

The remainder of the paper is organized as follows: a chatter 

stability model is introduced in Section 2, followed by 

introducing the receptance coupling model in Section 3. Boring 

bar and TMD dynamics have been defined in Section 4. 

Sensitivity analysis of tuned boring bar is carried out in Section 

5, and recommended tuning parameters are given in Section6, 

which is followed by the main conclusions in Section 7. 
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2. MACHINING STABILITY MODEL 

Since the purpose of developing damped boring bars is to 

overcome chatter, the relationship between dynamic stiffness, 

damping, and the limiting stable, chatter-free cutting parameters 

(depth of cut) can be characterized as [1]: 

𝑎𝑙𝑖𝑚,𝑐𝑟𝑖𝑡 =  
−1

2𝐾𝑓𝜇 min (𝑅𝑒(𝐻(𝜔𝑐)))
 (1) 

wherein𝑎𝑙𝑖𝑚,𝑐𝑟𝑖𝑡 is the critical limiting chatter-free depth of cut, 

𝐾𝑓 is cutting force coefficient which depends on the tool 

geometry and work piece material combination;𝜇is the 

directional factor; and 𝑅𝑒(𝐻(𝜔𝑐))is the real part of the FRF, 𝐻  

at a chatter frequency, 𝜔𝑐 . It is evident that critical depth of cut 

is inversely proportional to the negative peak in real part of tool 

point FRF. Thus, a decrease in the magnitude of the negative 

peak in real component of tool point FRF is taken as the 

objective function for tuning of TMD parameter.  

3. RECEPTANCE COUPLING 

Receptance coupling (RC) methods facilitate analysis of 

complex systems by synthesizing the FRFs, i.e. receptances of 

their individual subsystems. In this study, modified damped 

boring bar is the final assembled system which has been 

modeled as two sub-systems: original boring bar as the 1st 

subsystem, and the TMD mass as the 2nd subsystem, with a 

spring and damper coupling the two, see Fig. 1.  

Unlike the other classical approaches to the design of TMDs [6-

8] which cannot account for placement considerations of the 

TMD along the length of the boring bar, and are limited to only 

placing the TMD at the free end, which is not feasible in 

boring, since the free end also corresponds to the cutting end, 

the RC method allows designing TMDs to be positioned at 

different sections along the boring bar. Though the RC method 

can also suggest an optimal placement location, in the present 

study, absorber (TMD) is attached at the viable distance of 0.8 

times the total cantilevered length (𝑙 = 0.8𝐿) as free end is not 

accessible. 

If the direct receptances of the original boring bar at its free end 

and the TMD coupling location are known a priori, as are the 

cross receptances between the free end and the TMD coupling 

location, the receptance of the TMD can be tuned in such a way 

such that the synthesized receptance, 𝐻11, for the combined 

model at the free end can be shown to be: 

𝐻11 =  ℎ11 − ℎ12𝑎( ℎ2𝑎2𝑎 + ℎ2𝑏2𝑏 +  
1

𝑘′)
−1ℎ2𝑎1 

𝑘′(𝜔) = 𝑘 + 𝑖𝐶𝜔 
(2) 

wherein ℎ11 is the receptance at the free end for the original 

boring bar;ℎ2𝑎2𝑎 is the receptance at the coupling location of 

the TMD for the original boring bar;ℎ12𝑎 and ℎ2𝑎1 are the cross 

receptances between the free end and the coupling location of 

the TMD, again for the original boring bar, and since the 

structure is symmetric and linear, these cross receptances are 

the same and equal; ℎ2𝑏2𝑏  is the tunable receptance of the 

TMD; and𝑘′ is the effective stiffness. Though receptances in 

Eq. (2) are frequency (𝜔) dependent, 𝜔 is omitted for brevity. 

4. RECEPTANCES FOR SUBSYSTEMS 

The subsystem level receptances for the original boring bar and 

the TMD are obtained as discussed below.  

 

A. Original Boring Bar Model 

A long slender boring bar with a length to diameter ratio of 12 

is used in this study. Boring bar is modeled with Euler 

Bernoulli beams using the Finite Element (FE) method. Beam 

and FE parameters are given in Table 1. Note that the cutting 

insert and insert cartridge were ignored while modeling the 

boring bar.  

Table 1: Boring Bar FE Model Details 
Parameters Values 

Diameter (𝐷) 25mm 

Length (𝐿) 300mm 

Density (ρ) 7850 Kg/m3(Mild Steel) 

Young’s Modulus (E) 200 GPa(Mild Steel) 

Absorber location(𝑙 = 0.8𝐿) 240 mm 

Number of elements 300 (equal length) 

Element Type Linear, 2 nodes per element 

Node degree of freedom (DOF) 2 DOF per node (𝑢,
𝜕𝑢

𝜕𝑥
) 

An eigenvalue problem was formulated for the equation of 

motions using the mass and stiffness matrices. Solving the 

eigenvalue problem form of the equation of motion gives the 

eigen values (natural frequencies) and eigenvectors for the 

beam. Receptances can be evaluated using the eigenvalues and 

eigenvectors as:  

ℎ𝑝𝑞(𝜔) =  ∑
𝛷𝑝𝑘

𝛷𝑞𝑘

−𝜔2 + 𝜔𝑘
2 + 2𝑖𝜁𝜔𝜔𝑘

𝑛

𝑘=1 

 (3) 

wherein ℎ𝑝𝑞 is the receptance with response at location 𝑝and 

excitation at 𝑞. 𝛷𝑝𝑘
 and 𝛷𝑞𝑘

 are the mass normalized eigen 

vectors at 𝑝, 𝑞 for mode ‘𝑘’;𝜔𝑘 is eigenvalue for mode ‘𝑘’. 

Damping ratio,𝜁, that includes the influence of structural 

damping is assumed to be uniform for all modes at 5%. 

Real parts of the receptances obtained using Eq. (3) are shown 

in Fig. 2. Response is shown only up to 250 Hz, since the 

higher frequency modes are several orders of magnitude 

dynamically stiffer than the dominant low frequency response. 

As evident from Fig. 2, the real part of the receptances clearly 

show the response at the free end (ℎ11) to be greater (higher 

amplitude of the negative peak) than at the coupling end 

(ℎ2𝑎2𝑎) or between the free end and the coupling ends (ℎ12𝑎 =
ℎ2𝑎1). 

 
Fig.2: Direct and cross real parts of the receptances of the original 

boring bar model 

B. Absorber (TMD) Model 

The TMD mass is modelled as a single degree of freedom 

(SDOF) system with mass𝑚. The receptance of this SDOF 

system can be shown to be: 
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ℎ2𝑏2𝑏(𝜔) =  
−1

𝑚𝜔2 (4) 

Further, for a given absorber stiffness 𝐾 and damping 𝐶, 
flexible element in the assembled system is used as effective 

stiffness𝑘′(𝜔) = 𝑘 + 𝑖𝑐𝜔.  

To tune the absorber to the optimal parameter set of 𝑚, 𝑘, 𝑐 

combination, all the parameters were varied over a range 

according to Table 2.Maximum free mass is selected to be 

~10% of the beam mass (1.14 kg). Stiffness is selected such 

that TMDs natural frequency matches the1st and most flexible 

mode of the boring bar. Damping values are selected on the 

basis of physical feasibility. 

Table 2: Absorber Parameters Used in Sensitivity Analysis 

Parameter Units Value 

Free Mass (𝑚) kg 0.03 0.06 0.09 0.12 

Stiffness (𝑘) *1e4 N/m 4 8 12 16 

Damping (𝑐) N-s/m 10 30 50 70 

5. INFLEUNCE OF TMD PARAMETERS ON 

DAMPED RESPONSE OF THE BORING BAR 

Influence of 𝑚, 𝑘 and 𝑐 of the TMD on the damped response of 

the boring bar is investigated as below, by sequentially fixing 

two parameters and varying the third to check the sensitivity of 

the damped assembled response (𝐻11) on the TMD parameters.  

A. Mass 

Effect of varying free mass was studied by keeping the stiffness 

and damping in absorber constant. It is observed from Fig. 3 

that increasing the mass may not always improve the resistance 

to chatter (resistance to chatter being inversely proportional to 

min (𝑅𝑒(𝐻11)).  

 
Fig 3: Effect of Free Mass on Real Part of Assembly Response for 

𝒌 = 𝟒𝟎 𝒌𝑵/𝒎and 𝒄 = 𝟏𝟎 𝑵 − 𝒔/𝒎 

B. Stiffness  

For a fixed mass and damping, stiffness has to betuned to a 

particular (optimum) value to get the desired performance of 

absorber.Form Fig. 4 it is evident that 𝑘 = 8𝑒4 gives the best 

result, i.e. min (𝑅𝑒(𝐻11)). Higher/lower stiffness has less than 

optimum results. 

C. Damping 

For a fixed mass and stiffness, continuously increasing damping 

in the absorber may result in inefficiency of the damper. This 

effect is similar to the fact that energy dissipation for a SDOF 

increases with the increase in damping, but after a threshold 

(damping ratio =1) this has adverse effects. Same can be 

inferred from the Fig.  5. 

 
Fig 4: Effect of Stiffness on Real Part of Assembly Response for 

𝒎 = 𝟎. 𝟎𝟔 𝒌𝒈 and 𝒄 = 𝟏𝟎 𝑵 − 𝒔/𝒎 

 
Fig 5: Effect of Damping on Real Part of Assembly Response for 

𝒎 = 𝟎. 𝟎𝟑 𝒌𝒈 and 𝒌 = 𝟒𝟎 𝒌𝑵/𝒎 

6. RECOMMENDED TMD PARAMETERS 

It is evident from discussions in Section 5, that each of the three 

TMD parameters, i.e. 𝑚, 𝑘, and 𝑐 influence the damped 

response of the boring bar differently. Hence, to find the 

optimum set of parameters, a large 3D-matrix was created such 

that each of its data points stores the absolute value of 

minimum negative peak in the real part of assembled FRF. This 

matrix is then scanned to find the optimum set of 𝑘, and 𝑐 

corresponding to each value 𝑚. 

The procedure to scan the 3D-matirx to find the optimum data 

set can be understood from Table 3, which reports the absolute 

minimum of the negative of the real partof the assembled FRF 

for a selective subset of absorber parameters given in Table 2. 

For example, if we consider the Bold Italicizeddata point 

(0.4997 X 10-5m/N), this data point represents the value of the 

negative peak in real part of assembly response for a massof 

0.06 kg, stiffness of 80kN/m and damping of10N-s/m. 

Remaining entries in Table 3 can be similarly interpreted. 

Optimal stiffness and dampingwere found by varying 𝑘and 𝑐in 

the specified range for a fixed value of free mass, andthe real 

part of assembly response was analyzed to obtain the absolute 

minimum value of its negative peak. This procedure can be 

again explained using Table 3. For example, if we were to find 

the optimum parameter set for free mass of 0.06 kg, data points 

corresponding to the second row need be scanned. On scanning 

the second row, the absolute minimum of the real part is 

observed to be 0.3478 X 10-5m/N, which correspond to a 

stiffness of 80 kN/m and a damping of 30N-s/m. Similarly other 

absolute minimum values of the negative part of the real part 

corresponding to each value of the free mass are obtained, and 

these data points have been underlined in Table 3. 
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Table 3: Absolute Value of Negative Peak in Real Part (m/N X 10-5) of Modified Receptance for Different TMD Parameters 

S. 

No. 

Free 

Mass 

𝒎(kg) 

𝒄 = 10 N-m/s 𝒄 = 30 N-m/s 𝒄 = 50 N-m/s 

Joint Stiffness (𝑘, N/m) 

4e4 8e4 12e4 16e4 4e4 8e4 12e4 16e4 4e4 8e4 12e4 16e4 

1 0.030 0.5180 0.9190 1.0629 1.0922 0.6207 0.7861 0.9740 1.0435 0.7539 0.8180 0.9395 1.0118 

2 0.060 0.7597 0.4997 0.8046 1.0206 0.5618 0.3478 0.4767 0.7932 0.5319 0.3839 0.4566 0.6943 

3 0.090 0.8228 0.6700 0.5130 0.8498 0.6012 0.4441 0.3174 0.4418 0.5106 0.3754 0.2683 0.3119 

4 0.120 0.8492 0.7438 0.6291 0.6906 0.6268 0.5068 0.3993 0.3160 0.5161 0.4075 0.3158 0.2473 

a 

 

b 

 

Fig 6: (a) Recommended Values of 𝒌 and 𝒄 for a given Mass; (b) 

Absolute value of negative peak in Real Part of Tool Point FRF 

with recommended 𝒌 and 𝒄parameters. 

The above procedure is followed for all parameter levels of 

Table 2, and the results are summarized in Fig.6. It is clear from 

Fig 6 that damping and stiffness should be increased as we 

increase the free mass of the absorber. Fig 6(b) shows the 

absolute value of real peak in assembly response given that 

recommended parameters are used. It is evident that beyond a 

threshold value of mass, increased damping does not 

necessarily translate to reduction in amplitude of the absolute 

minimum of the negative part of the real part of the FRF. 

Finally, the influence of the optimized TMD on the critical 

chatter free stable depth of cut is evaluated for the case of 

cutting soft Aluminum with an effective cutting force 

coefficient (𝐾𝑓) of 600e6 N/m2 and with the directional factor 

(𝜇) of 1. For the original (unmodified) boring bar, the critical 

chatter free depth is evaluated to be 0.15mm (with the negative 

peak in real part of receptance being 1.0778e-05m/N); whereas 

for the boring bar with a TMD that has a mass of 0.05 kg, 

stiffness of 85 kN/m and damping of 25 N-s/m, the chatter free 

critical depth of cut is evaluated to be0.58 mm (with receptance 

peak magnitude of 2.8987e-06m/N). This translates to a ~400% 

improvement over the original case, a significant improvement.  

7. CONCLUSION 

This paper presents a new receptance coupling based approach 

to design damped boring bars. Boring bar was modeled as an 

Euler Bernoulli beam, and the absorber was modelled as a 

damped single degree of freedom spring-mass system. The 

receptance coupling model allows integration of the absorber at 

arbitrary locations along the length of the boring bar, something 

not possible with the earlier reported classical methods. 

Receptances of the separate substructures were synthesized to 

obtain the damped response of the boring bar at its free 

(cutting) end. Optimal absorber stiffness and damping 

parameters were obtained as a function of its free mass. 

Absorber effectiveness was observed to saturate beyond certain 

levels of stiffness and damping values. Chatter-free depth of cut 

for boring was found to increase to 0.58 mm with the tuned bar 

as compared to being 0.15 mm for the original bar, a significant 

improvement. 
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