
 

875 

ISBN: 978-93-80689-28-9 

Forced Vibration Analysis of a Micro End Mill Cutter by Mode Superposition 

Method with Damping Included  

 K. Rajesh Babu and G.L.Samuel* 

Manufacturing Engineering Section, Department of Mechanical Engineering 

Indian Institute of Technology, Chennai - 600 036, INDIA 

___________________________________________________________________________________ 

Abstract 

Machine tool structures are multi – degree – of – freedom systems and, as such, cannot easily be expressed mathematically. However, 

their dynamic characteristics strongly influence machine tool chatter. When a tool is engaged upon a steady cut, there is no dynamic 

excitation and static stiffness only of the machine tool structure is important. When the tool contacts some irregularity in the work surface, 

e.g. a hard spot, it will bounce or vibrate relative to the workpiece. This sort of forced vibration of tool is very significant when it comes 

to machine a workpart on a Miniaturized Machine Tool (MMT). This is due to the fact that tool tip dynamics of a micro tool is an 

important area of research study so far as micromachining is concerned. Furthermore, catastrophic micro tool failure is rampant in micro 

cutting because of slenderness nature of the micro tool. Moreover, frequent tool failures will result in machine tool breakdowns and hence 

affect productivity and surface topography of the finished workpart. In view of this fact, the present work focuses on forced vibration 

analysis of a micro end mill cutter by including damping effect too in the study of its dynamic performance. The damping characteristics 

of the micro end mill cutter can be represented appropriately using proportional damping. This assumption of proportional damping is 

adequate in mode superposition analysis of a linear dynamic system, for instance, a micro end mill as in present case. For qualitative 

dynamic analysis/study of a micro endmill cutter, linear model works well. In the present analysis, it is assumed that the micro end mill 

cutter is a cantilever beam, rigidly supported by the spindle holder (via collet) and the end mill vibrates due to constant cutting force 

(generally below 10N in all directions) applied to the cutter. The physical model of the cutter (that is flute length or axial cutting length) is 

idealized by the finite element approach (FEA) discretizing the same into suitable number of finite beam elements for the purpose of 

analyzing its dynamic impact on the overall performance of the micro cutting.  

Keywords: Micro end mill cutter, Forced vibration analysis, Proportional damping, Cantilever beam model, Finite element approach. 
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1. INTRODUCTION 

Micromilling which is defined as the downscaling of the 

conventional milling process involving the use of end mill 

diameters in the sub – millimeter range has become an 

established process for manufacturing of three – dimensional 

meso and micro components in metals and alloys. In 

micromilling, forces are exerted between the tool and the 

workpiece [1]. Furthermore, tools used in micro milling are 

characterized by long and smooth connections between the 

shaft and the cutting region. Therefore, one of the fundamental 

contributions to the accuracy of milled component is the 

deflection of the tool due to the cutting forces. Forced vibration 

is due to the tooth passing frequency. Thus, if the natural 

frequency of the machine, tool, or workpiece is near the 

characteristic frequency of the cutting force, a high dynamic 

amplification happens [2, 3].  

In the cutting process, vibration is a dynamically unstable 

phenomenon. All machines vibrate and as the state of the 

machine worsens (imbalance of the spindle, or other important 

shaft, defect of bearing and spindle) the vibration level 

increases. While the increase in machine vibration allows us to 

detect a defect, the analysis of machine vibration characteristics 

allows us to identify its cause. The terms rigidity and stability 

are interrelated to each other [4].  

Dynamic rigidity is one of the most critical characteristics of 

machine tools especially for high precision and high 

performance applications. It determines the dynamic response 

of the machine structure to cutting forces and inertial loads 

during the acceleration and deceleration of the axes. High 

amplitude vibrations in response to these loads may result in 

poor machined part quality and potential damage to the 

machine. A machine tool dynamic’s rigidity depends on many 

factors such as its configuration (geometry), size and 

construction method, etc. The overall dynamic rigidity in a 

machining system depends on all of the components involved, 

i.e., machine tool, tooling, fixtures, workpiece etc. Therefore, 

the rigidity of all components in a machining system is critical 

as the one with the lowest rigidity usually determines the 

rigidity of the whole system. And therefore, the present work 

focuses on dynamic analysis of a micro end mill cutter this is 

owing to the fact that micro tool is the one which will exhibit 

lowest rigidity of all the machine tool elements [5].  

The modal analysis theory for an undamped multi – degree – of 

– freedom (MDOF) is applicable for dynamic structures when 

damping is negligible. The presence of damping does not 

change every aspect of the theory presented for undamped 

systems. However, more mathematical treatment is needed in 

order to extend the modal analysis theory into the case for a 

damped multi – degree – of freedom system. The two main 

damping models used in MDOF modal analysis are the viscous 

damping model and the structural damping model. Like mass 

and stiffness properties, now the distribution of damping is an 

important property as well as its amount. The coupled equations 

of motion (EOM) for an undamped MDOF system can be 

uncoupled using the principle of orthogonality. Therefore, 

analysis of individual modes becomes convenient. However, 

once damping is present, it is generally difficult or not possible 

to uncouple the EOM. Therefore, damped MDOF systems 

demand extra theoretical treatment [6].  
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2. MODAL ANALYSIS OF A LINEAR VIBRATING 

SYSTEM 

 

Modal analysis is a procedure by which the orthogonality 

properties of the modes of vibration are utilized to transform the 

equations of motion (EOM) from a physical coordinate system 

to a principal coordinate system where the EOM are uncoupled. 

Rather than solving the n  original simultaneous ordinary 

differential equations (ODEs), each of the decoupled equations 

representing single oscillators can be solved independently. 

This procedure is valid for undamped systems as well as certain 

damped systems known as proportionally damped systems. The 

reason such a principal coordinate system exists is because the 

modes have certain orthogonlaity with respect to the mass and 

stiffness matrixes. The assumption of proportional viscous 

damping is made quite frequently many times only implicitly.  

The normal mode method, or modal analysis, applies only to 

undamped systems or systems for which the damping matrix 

can be made mathematically equivalent to a combination of the 

mass and stiffness matrices. Damping plays an insignificant 

role in the steady – state response of a periodically forced 

system if the forcing frequency is not near one of the system 

resonances. For special systems where the damping matrix is 

linearly related to the mass and stiffness matrices, that is 

proportional damping case, the simultaneous diagonalization of 

the stiffness and mass matrices can be accomplished along with 

that of the damping matrix [7].     

The analysis of a n   DOF damped systems deserves special 

attention, as one formula, mimicking the single – DOF case, 

which is possible for undamped systems, is not possible here. 

To this end, we start by converting the system of n  second 

order differential equations into a system of 2n  first order 

differential equations. We thus express the frequency equation, 

in normal form by recalling the usual transformation. 

 

2.1 Proportional Damping Model 

 

A proportional damping model is the first analytical model used 

to study damping for an MDOF system. Unlike mass and 

stiffness properties, damping cannot usually be modelled. This 

became a stumbling block to the analysis of a damped MDoF 

system. The proposition of proportional damping enabled the 

analysis to proceed. Proportional damping has found significant 

applications in finite element analysis (FEA) where damping 

needs to be incorporated in order to carry out meaningful 

response analysis and prediction. In modal analysis theory, the 

significance of proportional damping will become evident when 

we realize that a system with proportional damping would have 

the mode shapes identical to that of its undamped counterpart. 

We begin with the analysis of free vibration. If the damping 

distribution of the system of n   DOF with viscous damping is 

denoted as a matrix C , the matrix equation of motion of system 

(free vibration) is given by 

 

Mx+Cx+Kx 0                                                             (1) 

If it is forced vibration analysis, the above EOM can easily be 

modified by inducting forcing term to the right side of the Eq. 

(1) as follows, i.e.,  

 

Mx+Cx+Kx f                                                                (2)    

      

Here, matrix C is positive definite or positive semi – definite. 

Unlike the undamped case, there generally does not exist a set 

of principal coordinates, which uncouple equation (1). In 

particular, if we use the mode shape matrix X , then both the 

mass matrix M and the stiffness matrix K can be diagonalized. 

However, damping matrix C cannot be leaving the equations 

still uncoupled. The exceptional damping distribution which 

does allow the diagonalization of matrix C as well as matrix 

K and M is called proportional damping. Rayleigh indicated 

that if the viscous damping matrix C is proportional to mass 

and stiffness matrices (or that if the damping forces are 

proportional to the kinetic and potential energies of the system), 

then it can be written as [4]:  

 

a bC = M K                                                                             (3)       

where a and b are real positive constants. Equation (1) can 

then be uncoupled like the matrix equation for an undamped 

system. The substitution of Eq. (3) into Eq. (1) leads to: 

( )a b Mx + M K x + Kx 0                                                  (4)                                                                                                                      

Repeating the uncoupling process for the undamped case using 

the undamped mode shape function matrix X (obtained by 

assuming C = 0 from Eq. (1)) will lead to the uncoupled 

equations: 

..

..[ ]rm α + ..

..[ ]rc α + ..

..[ ]rk α = 0                                                (5) 

where diagonal matrix ..[ ]rc  is called the modal damping 

matrix or generalized damping matrix of the system.  

Premultiplying the Eq. (2) by T[ ]X , and taking note of 

coordinate transformation from physical to normal coordinate 

system, x = Xα(t)  and Eq. (5), we obtain  

 [ ]  2

i i i iα Cα ω α f                                                    (6)                                          

 where 2diag i   
2

ω , 1, ,i n  is the matrix of the 

eigenvalues and the modal forces ( )t
i

f  are 

              ( )t  
T

i i
i T

i i i

f X f
f

M X MX

                                                                                          

If the proportional damping of [ ] [ ]a b C M K  is used, 

C  is the diagonal matrix.  

[ ] [ ]a b  2
C I ω                                                               (7) 

Obviously the undamped mode shape matrix X can diagonalize 

the promotional damping matrix as well as the mass and 
stiffness matrices. Therefore, X (which is a real matrix) is 

also the mode shape matrix for the system having proportional 

viscous damping model. For modal analysis, this is the most 

important characteristic from a proportional damping. Eq. (4) 

consists of n  uncoupled equations. Using the theory of an 

SDOF system, the damped natural frequency of the 
thr mode,

r , can be estimated by  

 
21r r r                                                                    (8) 

2 2

r
r

r

ba 



                                                                  (9)                                                                                                                                        
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Like an single degree – of – freedom (SDOF) system, 
r is 

defined as the damping ratio. The difference is that this time 

damping is for thr mode. Eq. (8) shows that the damping ratio 

for a system with proportional damping is different for each 

mode. The proportional damping (viscous damping) as defined 

in Eq. (3) shall be expressed in a more general form as follows 

[8]: 
 

-1 -1KM C = CM K                                                            (10)  

    

3. MODELLING OF A MICRO END MILL CUTTER   

 

3.1 Micro End Mill Cutter  

 

The main drawbacks lie in the tool, which is critical in terms of 

size, wear and precision. Unlike conventional milling, in 

micomilling the main source of the compliance is the tool itself, 

which can account for up to 80 – 90 % of the total compliance 

at the tool tip. In micromachining, the edge radius of the tool 

tends to be the same order – of – magnitude as the chip 

thickness. The concept of a minimum chip thickness, below 

which no chip will form, or minimum depth of cut below which 

no material removal occur, has been investigated by a few 

researchers [3].         

The features of large shank, taper and reduced diameter at the 

cutting edges as shown in Fig. 1 are unique characteristics of a 

micro end mill. This design is required for micro end mills to 

provide tool holding with the shank and to keep the length to 

diameter ratio small in the fluted region for stiffness.                       

 
    

Fig. 1. Micro end mill [5] 

3.2 Finite Element Modelling of a Micro End Mill Cutter  

 
The end mill cutter is idealized as a cantilever beam (see Fig. 2) 

based on Euler – Bernoulli beam theory in which normal 

stresses are much higher than shear stresses such that normal 

stress is the principal stress. Fig. 2 depicts the micro end mill 

details and Fig. 3 illustrates FE idealization of the cutter. 

              

Fig. 2.  Cantilever beam model for a micro end mill 

 
                                           f     (cutting force) 

 
 

Fig. 3.  FE idealization of micro end mill cutter 

The detailed FEA of a micro end mill cutter which is modelled 

as a simple undamped forced vibration oscillator (cantilever 

beam model) is given in [8]. As for damping matrix is 

concerned, a complete procedure of deducing the same is 

highlighted in [8]. The mass, stiffness, and damping matrices of 

a micro end mill cutter are thus given as detailed below:    

 

8

3.5343 0.0000 1.7671 0.0004 0.0000 0.0000

0.0000 0.0000 0.0004 0.0000 0.0000 0.0000

1.7671 0.0004 3.5343 0.0000 1.7671 0.0004
10

0.0004 0.0000 0.0000 0.0000 0.0004 0.0000

0.0000 0.0000 1.7671 0.0004 1.7671 0.0004

0.0000





  




  

K

0.0000 0.0004 0.0000 0.0004 0.0000

 
 
 
 
 
 
 
 

 

5

0.1094 0.0000 0.0189 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0189 0.0000 0.1094 0.0000 0.0189 0.0000
10

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0189 0.0000 0.0547 0.0000

0.0000 0










  



M

.0000 0.0000 0.0000 0.0000 0.0000

 
 
 
 
 
 
 
 

                                                              
0.1170 0.0000 0.0202 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0202 0.0000 0.1170 0.0000 0.0202 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0202 0.0000 0.0585 0.0000

0.0000 0.000








  



C

0 0.0000 0.0000 0.0000 0.0000

 
 
 
 
 
 
 
 

     
 

By substituting the above matrices into Eq. (10), one can easily 

observe that the equality in Eq. (10) is satisfied. So the 

proportional damping model as suggested in this work would 

work well for a linear structure like micro end mill cutter.  And 

the forced response of a micro end mill cutter with damping 

included can be estimated by means of Duhamel integral 

(considering only steady – state response) as follows [4]: 

( )

0

1
( ) ( ) sin ( )i i

t

t

ri i

r

x t g e t d
     



 
                    (11) 

with damping frequency,  21r r r     

Decoupling of EOM via normal coordinates forms the crux of 

mode superposition method. To say explicitly, the whole 

system’s dynamic response is now represented as an individual 

or single – DOF response corresponding to the respective 

natural frequencies by the above Duhamel integral.     

4. DYNAMIC RESPOSNE OF A MICRO END MILL 

CUTTER  

4.1 Dynamic Response in Principal Coordinates  

 

Mode superposition analysis is the efficient tool for the 

evaluation of the response of the linear systems subjected to 

dynamic agencies. Two well – known mode superposition 

methods are available in the literature, the mode displacement 

method and the mode acceleration method. In the present 

analysis, the use of mode (displacement) superposition method 

is described in detail in the context of dynamic analysis of a 

micro end mill cutter. Mode superposition is basically a 

transformation technique that will change the mode of operation 

of dynamic system from one coordinate frame to another 

coordinate frame in an affable manner. That is to say that, the 

coupled equations of motion (EOM) will be uncoupled by 

principal coordinates or normal coordinates through 

orthogonality properties of modes of vibration. A brief 

procedure of mode (superposition) displacement method is 
given hereunder: 

Orthogonality of the mode shapes implies 
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T
X MX = I ;

2 2

1diag{ ..... }n T
X KX =Ω                          (11) 

If the viscous damping is proportional, then  

1 1 2 2diag{2 ,2 .....,2 }n n     T
X CX = Z

 

 i X modal matrix; [i  1 2 n
X X , X ,- - - - --, X ]

 
thi column is iX

 
Relationship between physical coordinates ( x ) and principal 

(normal) coordinates (α ) is  

 -1α X x  or x Xα  
EOM in physical coordinates and normal coordinates is now 

given as follows [9]: 

Mx+Cx+Kx f                              
α +Zα +Ωα = G(t)

                                                    (12)                                                           
 

where 

1 1 2 2diag{2 ,2 .....,2 }n n     T
X CX = Z , 

2 2

1diag{ ..... }n T
X KX =Ω and  T

G(t) X F  

The above equation is called n   second order uncoupled 

equations of motion (EOM) and of the form, 
22 ( )i i i i i i iG t       , 1,....,i n  

The solution of which is given by 
 

( ) 2

2 0

1
( ) sin 1 ( ) ( )

1

i i
t

t

i i i i

i i

t e t G d
       

 

 
  




              (13) 

By convolution integral, Eq. (13) can be recast into  

2 2
( ) 1 sin cos

1

i iti i
i i i

i i

G
t e t t

  
  

 


   
    
    

for 1,....,i n  

with damping ratios 1 0.04311 
2 0.0069  3 0.0024   

Table 1  

Natural frequencies and Damped frequencies of a micro end 

mill cutter [8] 

Mode No.      Natural  

Frequencies 

(rad/sec) 

Damped  

Frequencies 

(rad/sec) 

1 6

1 1.235 10    6

1 1.234 10    

2 6

2 7.744 10    6

2 7.744 10    

3 6

3 21.717 10    6

3 21.717 10    

 

Substituting the above numerical values (as listed in Table 1) 

for natural and damping frequencies in Eq. (13), we get the 

dynamic response (for the first three modes) in principal or 

normal coordinates as follows and further it is to be noted that 

the estimated damping ratios for the dynamic model of micro 

end mill cutter are less than 0.05.Due to this fact the difference 

between natural and damping frequencies is almost negligible 

(see Eq. (11)). 

1 16 1
1 1 1

2

1

( ) 1.4824 10 1 sin cos
1

tt F e t t  
  




   
     
    

 

2 28 2
2 2 2

2

2

( ) 6.323 10 1 sin cos
1

tt F e t t  
  




   
      
    

 

3 39 3
3 3 3

2

3

( ) 6.64172 10 1 sin cos
1

t
t F e t t

  
  




   
      
    

 

Further simplification of the above equations will yield, 

 53240.85 6 6

1( ) 1 0.04315sin(1.234 10 ) cos(1.234 10 )tt F e t t      
 

 

 53433.6 6 6

2( ) 0.0069sin(7.744 10 ) cos(7.744 10 ) 1tt F e t t      
 

 

 52120.8 6 6

3( ) 0.0024sin(21.717 10 ) cos(21.717 10 ) 1tt F e t t      
 

 

And for a cutting force of 10 N, the above will become  

 53240.85 6 6

1( ) 10 10 0.04315sin(1.234 10 ) cos(1.234 10 )tt e t t      
 

 

 53433.6 6 6

2( ) 10 0.0069sin(7.744 10 ) cos(7.744 10 ) 10tt e t t      
 

 

 52120.8 6 6

3( ) 10 0.0024sin(21.717 10 ) cos(21.717 10 ) 10tt e t t      
 

 

5 CONCLUSIONS 

In this research work, an attempt has been made to model a 

micro end mill cutter by treating it as a simple damped forced 

oscillator. And the dynamic response in principal (normal) 

coordinates has been determined utilizing Duhamel integral. In 

determining the dynamic response of the cutter, the EOM 

expressed in physical coordinates were decoupled by means of 

natural or principal coordinates. This sort of analysis is called 

modal (displacement) superposition analysis. The beam 

elements were used to develop a FE model of the micro end 

mill cutter and the relevant equations were formulated based on 

the proportional damping models.  In addition, miniature tools 

have vey high natural frequencies which are difficult to excite 

and measure. Therefore, numerical prediction methods as 

presented in this work were well suited to determine tool tip 

dynamics. The study of dynamic aspects of a micro tool 

assumes significance from the viewpoint of visualizing its 

dynamic behaviour under stipulated forced cutting conditions.  
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